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Central-force Problems in SUSY QM

E.g. The Hydrogen Atom

The Schrodinger eq. is
o2
|:_V2 - ’f':| \II(T707 QO) = E\I/(T, 07 QO) .

Then we separate the variables as U(r, 0, ¢) = R(r)Y (0, ¢), obtaining

2 2d L? e

15 ~ S| R(r) = ER(r)

rdr = 72

L2Y (8, ¢) = —I(1 +1)Y (6, )

where Y (6, o) is the Spherical Harmonics.
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The Hyperspherical Formalism

With the substitution u(r) = rR(r), the radial eq. is reduced to

[_;:2 + W; D_ e:] u(r) = Bu(r) .

One can “factorize” the Hamiltonian and the equation becomes

_i_l+1+ e? i_ﬂ_i_ e? r)
dr T 21+ 1) dr T 21+ 1) wr

Therefore, the energy eigenvalues are

el

Ep=-——
An+1+1)2

and the wave function for each eigenvalue is also obtained.
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Central-force Problems in SUSY QM
The Hyperspherical Formalism

e For the ground state,

d I+1 2 o
+ —° ) up(r) =0 = up(r) o< rtle” 2050 |

(dr ot 2(1+ 1)
@ For the excited states,
the wave functions are obtained by using the following structure of

SUSY QM:

Energy
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The Hyperspherical Formalism

How to Deal with Few-body Systems?

In general, for N-body problems, the Hyperspherical formalism is
employed. Now we restrict ourselves to the N = 3 case.
J. L. Ballot and M. Fabre de la Ripelle, Annals Phys. 127, 62 (1980)

@ We use the Jacobi relative coordinates:

miry + maory )
p1:i=r;—ry, py:=———"->—T13, p3:=Rcm.
mi + mo

@ The kinetic energy operator is written as

- 1
T=-——""V2
2Myo

1
Rcm Z (V12-71 + V?’Q) :

where p is the reduced mass (We use the natural system of units

hereafter). Then the Schrédinger eq. for the internal dynamics is

1

2 (Vil + Viz) + V| ¥(p1,p2) = EV(p1,p2) -
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The Hyperspherical Formalism

© Here we define hyperradius and hyperangle:

=124+ p2, £:= arctan 2L |

P2

@ Especially for the equal mass systems with central forces, one can
separate the equation as following:

2 5d  L?
" ade + ) +2uV(z)| X(z) =2uEX (x) ,

LY (Q) = —y(y+ 492 (Q)

where Q) denotes the set of five angles {&, 601, p1,02, p2} and #(Q)
is the Hyperspherical Harmonics:

D (Q) = N(sin €)' (cos ) Pl /20F1 2 (cos 26) Y, (0, 0,) Y, (03, 02)

Ix
and
y=1,+1x+2n.
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The Model

The Coordinates Setting

Question: How can we deal with non-equal mass systems?
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The Model

The Coordinates Setting

Question: How can we deal with non-equal mass systems?

We use modified coordinates to describe the positions of the particles:

S. Rosati, World Scientific (2002)

instead of the ordinary r;, where M is the reference mass. Our definitions
of Jacobi coordinates here are

mo mi
pP = X1 — X9 ,
mi + ma mi + ma

mgmq Moms mi + me
A= | —F——————— X1+ —F———Xp— /| — X3,
Mot (M1 + m2) Mot (M1 + mo) Mot
- v M
RCM = mi (\/ﬁXl + v/ MoXo =+ \/m3X3) .
tot
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The Model

The Model
We follow the same procedure as the equal mass case. The Schrodinger
eq. is
—ﬁ (V2 +V3) + V()| U(z,Q) = E¥(z,Q)
with

V(x):ax+bx2—§ , where z = /p? + 2.

@ ax: The linear term
(This satisfies the experimental data of the ground state mass.)

@ bxz2: The correction of two-body forces
(This allows us to factorize the Hamiltonian.)

2
o —<: The Coulomb-like term (We fix ¢ = —gas.)
€T

Now we take M = 1 MeV without loss of generality.
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The Model

2 5d 1?2 ¢
= 2= 42 49 2_2)| X(x)=2EX
dz?2 2zdx + 2 * (ax +bo x)] (@) ()

_—
L2 (Q) = —y(y + 4% (Q)

Substituting x(z) = 2%/2X (), we get the radial eq.:

2 A+ + ,
[de + — +2 (ax + bz — x)} x(xz) =2Ex(z) ,

whose Hamiltonian can be factorized and the equation becomes

d B d B _ 9
(—@—Q—A;U—;—O—D) (E—Q—Ax—;—i—D)x(I)—(QE-FD —2AB — A)x(z) .

Therefore, the energy eigenvalues are
2

c 5
2En:—,+2\/5< +>+4n+1\/l;.
irnrge PPy Y
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The Mass Spectra of (qq'b)

The mass is calculated as
3
i=1

Here are the mass spectra of ;" (uub) and A9 (udb):
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Figure 1. The mass spectra
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The Mass Spectra of (qq'b)
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Figure 2: The mass spectra
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The Wave Functions of (uub)

The wave functions ¥ (x, Q) = 2752 (x)% (Q) are also obtained
analytically in our scheme. Here, we define the existence probability as

P(z,§) = /de/dQ,\|\Il(:r,Q)|2

We plot it in the (ruu, Tuub)-plane:

s .. o x=1/p2+ N2

(b) y=1 () y=2
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. @ ¢ = arctan —
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Figure 3: The density plots of P

i
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Results & Discussions

Baryonic Structure in terms of Our Model

@ As the hyper-angular momentum ~ grows, two different modes of
internal dynamics arise.

T (uuw)-b
fm]

ruu

2(‘ )

Figure 4: The internal structure of the baryon
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Conclusion

Conclusion and Future Works

@ We can solve analytically non-equal mass problems
in terms of SUSY QM.
o We find that, in the Hyperspherical formalism,
the Hamiltonian of hyperradial equations can be factorized
with carefully chosen potentials (for any N).
o The tricky way of choosing coordinates allows us to generalize
the usual (equal mass) Hypersherical formalism.
@ As a result, we find the following features of the structure of
the baryonic systems.
o We obtain the mass spectra of the baryons.
o The baryons have two modes of internal dynamics.
@ Is it possible to construct the Hamiltonian ‘H = ( }{)M }?B )
where Hy; and Hg are SUSY partners?
o |s there a meson-baryon symmetry

with the meson-baryon supermultiplet ( ?)M )?
B

— Three quarks for Muster Mark! (James Joyce, Finnegans Wake)

Thank you for listening. 16/16
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