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Central-force Problems in SUSY QM

E.g. The Hydrogen Atom

The Schrödinger eq. is[
−∇2 − e2

r

]
Ψ(r, θ, φ) = EΨ(r, θ, φ) .

Then we separate the variables as Ψ(r, θ, φ) = R(r)Y (θ, φ), obtaining
[
− d2

dr2
− 2

r

d

dr
+

L̂2

r2
− e2

r

]
R(r) = ER(r) ,

L̂2Y (θ, φ) = −l(l + 1)Y (θ, φ)

where Y (θ, φ) is the Spherical Harmonics.
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With the substitution u(r) = rR(r), the radial eq. is reduced to[
− d2

dr2
+

l(l + 1)

r2
− e2

r

]
u(r) = Eu(r) .

One can “factorize” the Hamiltonian and the equation becomes(
− d

dr
− l + 1

r
+

e2

2(l + 1)

)(
d

dr
− l + 1

r
+

e2

2(l + 1)

)
u(r)

=

(
E +

e4

4(l + 1)2

)
u(r) .

Therefore, the energy eigenvalues are

En = − e4

4(n+ l + 1)2
,

and the wave function for each eigenvalue is also obtained.
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(
− d

dr
− l + 1

r
+

e2

2(l + 1)

)(
d

dr
− l + 1

r
+

e2

2(l + 1)

)
u(r) =

(
E +

e4

4(l + 1)2

)
u(r)

For the ground state,(
d

dr
− l + 1

r
+

e2

2(l + 1)

)
u0(r) = 0 =⇒ u0(r) ∝ rl+1e−

r
2(l+1) .

For the excited states,
the wave functions are obtained by using the following structure of
SUSY QM:
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How to Deal with Few-body Systems?
In general, for N -body problems, the Hyperspherical formalism is
employed. Now we restrict ourselves to the N = 3 case.

J. L. Ballot and M. Fabre de la Ripelle, Annals Phys. 127, 62 (1980)

1 We use the Jacobi relative coordinates:

ρ1 := r1 − r2 , ρ2 :=
m1r1 +m2r2
m1 +m2

− r3 , ρ3 := RCM .

2 The kinetic energy operator is written as

T̂ = − 1

2mtot
∇2

RCM
− 1

2µ

(
∇2

ρ1
+∇2

ρ2

)
.

where µ is the reduced mass (We use the natural system of units
hereafter). Then the Schrödinger eq. for the internal dynamics is[

− 1

2µ

(
∇2

ρ1
+∇2

ρ2

)
+ V

]
Ψ(ρ1,ρ2) = EΨ(ρ1,ρ2) .
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3 Here we define hyperradius and hyperangle:

x :=
√

ρ12 + ρ22 , ξ := arctan
ρ1
ρ2

.

4 Especially for the equal mass systems with central forces, one can
separate the equation as following:

[
− d2

dx2
− 5

x

d

dx
+

L̂2

x2
+ 2µV (x)

]
X(x) = 2µEX(x) ,

L̂2Y (Ω) = −γ(γ + 4)Y (Ω)

where Ω denotes the set of five angles {ξ, θ1, φ1, θ2, φ2} and Y (Ω)
is the Hyperspherical Harmonics:

Y (Ω) ≡ N (sin ξ)lρ(cos ξ)lλP lρ+1/2,lλ+1/2
n (cos 2ξ)Y

mρ

lρ
(θρ, φρ)Y

mλ

lλ
(θλ, φλ)

and
γ = lρ + lλ + 2n .
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The Coordinates Setting

Question: How can we deal with non-equal mass systems?
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The Coordinates Setting

Question: How can we deal with non-equal mass systems?

We use modified coordinates to describe the positions of the particles:
S. Rosati, World Scientific (2002)

xi :=

√
mi

M
ri ,

instead of the ordinary ri, where M is the reference mass. Our definitions
of Jacobi coordinates here are

ρ :=

√
m2

m1 +m2
x1 −

√
m1

m1 +m2
x2 ,

λ :=

√
m3m1

mtot(m1 +m2)
x1 +

√
m2m3

mtot(m1 +m2)
x2 −

√
m1 +m2

mtot
x3 ,

R̃CM :=

√
M

mtot
(
√
m1x1 +

√
m2x2 +

√
m3x3) .
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The Model

We follow the same procedure as the equal mass case. The Schrödinger
eq. is [

− 1

2M

(
∇2

ρ +∇2
λ

)
+ V (x)

]
Ψ(x,Ω) = EΨ(x,Ω)

with
V (x) = ax+ bx2 − c

x
, where x =

√
ρ2 + λ2 .

ax: The linear term
(This satisfies the experimental data of the ground state mass.)

bx2: The correction of two-body forces
(This allows us to factorize the Hamiltonian.)

− c

x
: The Coulomb-like term (We fix c = −2

3
αs.)

Now we take M = 1 MeV without loss of generality.
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=⇒


[
− d2

dx2
− 5

x

d

dx
+

L̂2

x2
+ 2

(
ax+ bx2 − c

x

)]
X(x) = 2EX(x)

L̂2Y (Ω) = −γ(γ + 4)Y (Ω)

Substituting χ(x) = x5/2X(x), we get the radial eq.:[
− d2

dx2
+

−γ(γ + 4) + 15
4

x2
+ 2

(
ax+ bx2 − c

x

)]
χ(x) = 2Eχ(x) ,

whose Hamiltonian can be factorized and the equation becomes(
− d

dx
+Ax− B

x
+D

)(
d

dx
+Ax− B

x
+D

)
χ(x) = (2E +D2 − 2AB −A)χ(x) .

Therefore, the energy eigenvalues are

2En = − c2

4(γ + n+ 5
2 )

2
+ 2

√
b

(
γ +

5

2

)
+ (4n+ 1)

√
b .
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The Mass Spectra of (qq’b)
The mass is calculated as

Mn =

3∑
i=1

mi + En .

Here are the mass spectra of Σ+
b (uub) and Λ0

b(udb):

Figure 1: The mass spectra
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The Mass Spectra of (qq’b)

Figure 2: The mass spectra
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The Wave Functions of (uub)
The wave functions Ψ(x,Ω) = x−5/2χ(x)Y (Ω) are also obtained
analytically in our scheme. Here, we define the existence probability as

P (x, ξ) =

∫
dΩρ

∫
dΩλ |Ψ(x,Ω)|2 .

We plot it in the (ruu, ruu-b)-plane:

Figure 3: The density plots of P

x =
√
ρ2 + λ2

ξ = arctan
ρ

λ
ruu ∝ ρ

ruu-b ∝ λ
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Baryonic Structure in terms of Our Model
As the hyper-angular momentum γ grows, two different modes of
internal dynamics arise.

Figure 4: The internal structure of the baryon
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Conclusion and Future Works
We can solve analytically non-equal mass problems

in terms of SUSY QM.
We find that, in the Hyperspherical formalism,
the Hamiltonian of hyperradial equations can be factorized

with carefully chosen potentials (for any N).
The tricky way of choosing coordinates allows us to generalize

the usual (equal mass) Hypersherical formalism.

As a result, we find the following features of the structure of
the baryonic systems.

We obtain the mass spectra of the baryons.
The baryons have two modes of internal dynamics.

Is it possible to construct the Hamiltonian H =

(
HM 0
0 HB

)
where HM and HB are SUSY partners?

Is there a meson-baryon symmetry

with the meson-baryon supermultiplet

(
ϕM

ϕB

)
?

— Three quarks for Muster Mark! (James Joyce, Finnegans Wake)

Thank you for listening. 16 / 16
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